正常的胎儿脂肪组织(AT)发育对于围产期健康至关重要。在或简单地脂肪以脂质形式存储能量。营养不良可能导致过度或耗尽的肥胖。尽管以前的研究表明,AT和围产期结局的量之间存在相关性,但缺乏定量方法,对AT的产前评估受到限制。使用磁共振成像(MRI),可以从两个点Dixon图像中获得整个胎儿的3D脂肪和纯水图像,以在脂质定量时启用。本文是第一个提出一种基于Dixon MRI的胎儿脂肪分割的深度学习方法的方法。它优化了放射科医生的手动胎儿脂肪描述时间,以生成带注释的培训数据集。它由两个步骤组成:1)基于模型的半自动胎儿脂肪分割,由放射科医生进行了审查和纠正; 2)使用在所得的注释数据集中训练的DL网络的自动胎儿脂肪分割。培训了三个DL网络。与手动分割相比,我们显示出分割时间(3:38小时至<1小时)和观察者变异性(0.738至0.906)的显着改善。用3D残差U-NET,NN-UNET和SWIN-UNETR TRONSERTER网络对24个测试用例进行自动分割,平均骰子得分分别为0.863、0.787和0.856。这些结果比手动观察者的变异性更好,并且与自动成人和小儿脂肪分割相当。一名放射科医生审查并纠正了六个新的独立案例,并使用最佳性能网络进行了细分,导致骰子得分为0.961,校正时间显着减少了15:20分钟。使用这些新颖的分割方法和短暂的MRI获取时间,可以在临床和大型果园研究中量化全身皮下脂质的单个胎儿。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
复制自然人类运动是机器人控制理论的长期目标。从生物学中汲取灵感,到达控制网络会产生平稳而精确的运动,可以缩小人类和机器人控制之间的性能差距。模仿大脑的计算原理的神经形态处理器是近似此类控制器的准确性和平滑性的理想平台,同时最大程度地提高了能源效率和鲁棒性。但是,常规控制方法与神经形态硬件的不兼容限制了其现有适应性的计算效率和解释。相比之下,平滑而准确的运动运动的基础神经元连接组有效,最小,并且与神经形态处理器固有兼容。在这项工作中,我们模拟了这些网络,并提出了一个具有生物学现实的尖峰神经网络,以进行运动控制。我们的控制器结合了自适应反馈,以提供平稳而准确的电动机控制,同时继承了其生物学对应物的最小复杂性,该生物学对应物控制到达运动,从而可以在英特尔的神经形态处理器上进行直接部署。我们使用我们的控制器作为构建块,并受到人类武器中联合协调的启发,我们扩大了控制现实世界机器人武器的方法。所得运动的轨迹和平滑,最小的速度曲线类似于人类的动作,从而验证了我们控制者的生物学相关性。值得注意的是,我们的方法实现了最新的控制性能,同时将运动混蛋减少19 \%以提高运动平滑度。我们的工作表明,利用大脑的计算单元及其连通性可能会导致设计有效,有效且可解释的神经形态控制器,从而为完全自主系统中的神经形态溶液铺平了道路。
translated by 谷歌翻译
自主代理需要自定位才能在未知环境中导航。他们可以使用视觉进程(VO)来估计自我运动并使用视觉传感器定位自己。作为惯性传感器或滑板作为轮编码器,这种运动估算策略不会因漂移而受到损害。但是,带有常规摄像机的VO在计算上是要求的,它限制了其在严格的低延迟, - 内存和 - 能量要求的系统中的应用。使用基于事件的相机和神经形态计算硬件为VO问题提供了有希望的低功率解决方案。但是,VO的常规算法不容易转换为神经形态硬件。在这项工作中,我们提出了一种完全由适合神经形态实现的神经元构件构建的VO算法。构建块是代表向量符号体系结构(VSA)计算框架中向量的神经元组,该框架是作为编程神经形态硬件的抽象层提出的。我们提出的VO网络生成并存储了对展示的视觉环境的工作记忆。它更新了此工作内存,同时估计相机的位置和方向的变化。我们证明了如何将VSA作为神经形态机器人技术的计算范式借用。此外,我们的结果代表了使用神经形态计算硬件进行快速和效率的VO以及同时定位和映射(SLAM)的相关任务的重要步骤。我们通过机器人任务和基于事件的数据集对实验进行了实验验证这种方法,并证明了最先进的性能。
translated by 谷歌翻译
在视觉场景理解中,推断对象的位置及其刚性转换仍然是一个开放的问题。在这里,我们提出了一种使用有效的分解网络的神经形态解决方案,该解决方案基于三个关键概念:(1)基于矢量符号体系结构(VSA)的计算框架,带有复杂值值矢量; (2)分层谐振器网络(HRN)的设计,以处理视觉场景中翻译和旋转的非交换性质,而两者都被组合使用; (3)设计多室尖峰拟态神经元模型,用于在神经形态硬件上实现复杂值的矢量结合。 VSA框架使用矢量结合操作来产生生成图像模型,其中绑定充当了几何变换的模棱两可的操作。因此,场景可以描述为向量产物的总和,从而可以通过谐振器网络有效地分解以推断对象及其姿势。 HRN启用了分区体系结构的定义,其中矢量绑定是一个分区内的水平和垂直翻译,以及另一个分区内的旋转和缩放的定义。尖峰神经元模型允许将谐振网络映射到有效且低功耗的神经形态硬件上。在这项工作中,我们使用由简单的2D形状组成的合成场景展示了我们的方法,经历了刚性的几何变换和颜色变化。同伴论文在现实世界的应用程序方案中为机器视觉和机器人技术展示了这种方法。
translated by 谷歌翻译
端到端的口语理解(SLU)使用单个模型直接从音频中预测意图。它有望通过利用中间文本表示中丢失的声学信息来提高助手系统的性能,并防止自动语音识别(ASR)中的级联错误。此外,在部署助手系统时,拥有一个统一模型具有效率优势。但是,具有语义解析标签的公共音频数据集有限的数量阻碍了该领域的研究进展。在本文中,我们发布了以任务为导向的语义解析(Stop)数据集,该数据集是公开可用的最大,最复杂的SLU数据集。此外,我们定义了低资源拆分,以建立有限的标记数据时改善SLU的基准。此外,除了人类录制的音频外,我们还发布了TTS生成版本,以基于端到端SLU系统的低资源域适应性的性能。最初的实验表明,端到端SLU模型的性能比级联的同行差一些,我们希望这能鼓励未来的工作。
translated by 谷歌翻译
这里引入了与分级矛盾的绑架概念,这是Peirce绑架推论的一种形式。绑架标准的一般形式是在拟议的分级矛盾和递归聚集逻辑的逻辑中形式化的。还指定了绑架程序的共同步骤,以最小化此类标准。在14位流行的教科书学习者(从层次聚类到K-NN和SVR)的示例中证明了这一点,每个人都执行AGC。提出的理论解释了现实生活中的学习者,但它避免了任何提及统计的人,因此可以将其视为统计学习理论的逻辑替代方法。
translated by 谷歌翻译